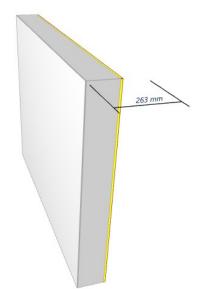
INSUL Sound Insulation Prediction (v9.0.19)

Program copyright Marshall Day Acoustics 2017

- Key No.
Job Name:
Job No.:


Date:16/12/2019 File Name:

Authorised INSUL user:Roldan Notes:

Acoustic prediction

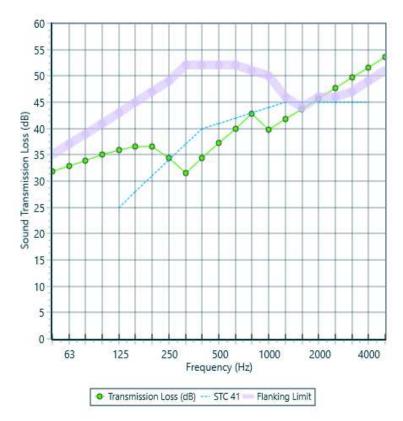
STC 41

System description (from left to right side of graphic)

Panel 1 : 1 x 3 mm Concrete

+ 1 x 150 mm Hebel Block

+ 1 x 10 mm Yeso Estuco


Frame zweischalig massiv (90 mm x 45 mm)

Stud spacing 400 mm

Partition surface mass = 119 kg/m²

Partition width = 163 mm

freq.(Hz)	TL(dB)	Deviations
50	32	
63	33	
80	34	
100	35	
125	36	0
160	37	0
200	37	0
250	34	0
315	32	-5
400	34	-6
500	37	-4
630	40	-2
800	43	0
1000	40	-4
1250	42	-3
1600	44	-1
2000	46	0
2500	48	0
3150	50	0
4000	52	0
5000	54	
Sum		-25
Panel Size : 2,7 m x 4,0 m		

Disclaimer. This is an acoustic prediction and not a laboratory test result. Comparisons with test data show that INSUL predictions are generally within +/- 3 dB for simple constructions, however can be as high as +/- 5 dB for hybrid systems or triple panel constructions. Like any prediction tool, INSUL should not be regarded as a substitute for test data or an acoustic estimate from a suitably qualified Acoustic Engineer who may have a contrary opinion to the prediction shown. For this reason, the prediction stated in this letter should be used as a guide only and not form part of a Project specification or used for certification purposes.

INSUL Sound Insulation Prediction (v9.0.19)

Program copyright Marshall Day Acoustics 2017

- Key No. Job Name: Job No.:

Date:16/12/2019 File Name:

Authorised INSUL user:Roldan Notes:

Glossary

dB Decibel. The unit of sound level.

Frequency The number of pressure fluctuation cycles per second of a sound wave. Measured in units of Hertz (Hz).

Octave band Sound, which can occur over a range of frequencies, may be divided into octave bands for analysis. The

audible frequency range is generally divided into 7 octave bands. The octave band frequencies are 63Hz,

125Hz, 250Hz, 500Hz, 1kHz, 2kHz and 4kHz.

Transmission loss

(TL)

The attenuation of sound pressure brought about by a building construction. Transmission loss is specified

at each octave or one third octave frequency band.

STC Sound Transmission Class

A single number system for quantifying the transmission loss through a building element. STC is based upon typical speech and domestic noises, and thus is most applicable to these areas. STC of a building

element is measured in approved testing laboratories under ideal conditions.

(refer to ASTM E413 Classification for Rating Sound Insulation)