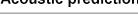

INSUL Sound Insulation Prediction (v9.0.19)

Program copyright Marshall Day Acoustics 2017


- Key No. Job Name: Job No.: Date:2/3/2020 File Name:

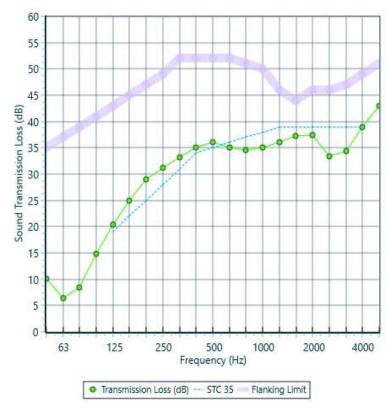
Acoustic prediction

STC 35

System description (from top to bottom of graphic)

Panel 1 : 1 x 0,6 mm Roof Cladding Dimondclad Rib 20 Frame Suspentes métalliques (2,5E2 mm x 45 mm)

Stud spacing 600 mm Cavity Width 250 mm


Infill

Panel 2 : 1 x 12,5 mm Knauf Wallboard 12.5mm

Partition surface mass = 14,5 kg/m² Partition width = 263 mm

freq.(Hz)	TL(dB)	Deviations
50	10	
63	6	
80	9	
100	15	
125	20	0
160	25	0
200	29	0
250	31	0
315	33	0
400	35	0
500	36	0
630	35	-1
800	34	-3
1000	35	-3
1250	36	-3
1600	37	-2
2000	37	-2
2500	33	-6
3150	34	-5
4000	39	0
5000	43	
Sum		-25
Panel Size: 2,7 m x 4,0 m		
Mass-air-mass resonant frequency = : 63 Hz		

Disclaimer: This is an acoustic prediction and not a laboratory test result. Comparisons with test data show that INSUL predictions are generally within +/- 3 dB for simple constructions, however can be as high as +/- 5 dB for hybrid systems or triple panel constructions. Like any prediction tool, INSUL should not be regarded as a substitute for test data or an acoustic estimate from a suitably qualified Acoustic Engineer who may have a contrary opinion to the prediction shown. For this reason, the prediction stated in this letter should be used as a guide only and not form part of a Project specification or used for certification purposes.

INSUL Sound Insulation Prediction (v9.0.19)

Program copyright Marshall Day Acoustics 2017

- Key No. Job Name: Job No.: Date:2/3/2020 File Name:

Authorised INSUL user:Roldan Notes:

Glossary

Decibel. The unit of sound level. dΒ

Frequency The number of pressure fluctuation cycles per second of a sound wave. Measured in units of Hertz (Hz).

Octave band Sound, which can occur over a range of frequencies, may be divided into octave bands for analysis. The audible frequency range is generally divided into 7 octave bands. The octave band frequencies are 63Hz,

125Hz, 250Hz, 500Hz, 1kHz, 2kHz and 4kHz.

Transmission loss

(TL)

The attenuation of sound pressure brought about by a building construction. Transmission loss is specified

at each octave or one third octave frequency band.

STC Sound Transmission Class

A single number system for quantifying the transmission loss through a building element. STC is based upon typical speech and domestic noises, and thus is most applicable to these areas. STC of a building

element is measured in approved testing laboratories under ideal conditions.

(refer to ASTM E413 Classification for Rating Sound Insulation)